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Abstract. Isospin violating signals in the τ− → (3π)−ντ decay mode are discussed. For the τ− →
π−π−π+ντ decay mode, isospin violation arises from the vector current contribution in the τ− → ωπ−ντ
decay with the subsequent isospin violating ω decay into π+π−. We demonstrate that such effects may be
observed in presently available data through the measurement of the interference effects of these vector
current contributions with the dominating axial vector current, i.e. through a measurement of the structure
functions WF ,WG,WH and WI . In the case of the τ− → π0π0π−ντ decay mode, a vector current contri-
bution is generated by ηπ0 mixing in the decay chain τ− → ηρ−ντ → π0π0π−ντ . We find that this effect
is rather small, the magnitude of the associated interference terms being too low for present statistics.

I Introduction

Isospin rotations have been successfully used in τ decays
into an even number of final state pions to relate the vec-
tor current to the corresponding cross sections measured
in electron positron collisions [1,2]. In the case of the two
pion mode, the τ decay rate has been measured with a
relative error below one percent which is of the size of pos-
sible isospin violating effects. Isospin symmetry relations
are also very useful to relate various decay amplitudes in
3πντ , KKπντ and Kππντ final states [3–5].

Isospin violation effects in the decay τ− → ωπ−ντ have
been discussed in [6]. Such signals could be revealed by an
analysis of the angular distribution in the ωπ− system.
Another interesting isospin violating process is provided
by the decay τ− → ηπ−ντ . The different theoretical pre-
dictions for the branching ratio [7,8] are still one order
of magnitude smaller than the actual experimental upper
limit [9].

In this article we will concentrate on possible isospin
violating effects in the τ → 3πντ decay mode. Although
the theoretical uncertainties in this decay mode are fairly
large, observations of small isospin violating effects (below
1% to the rate) might be possible with presently available
statistics. The sensitivity to such small effects is provided
by an analysis of angular distributions. The relevant in-
formation is encoded in structure functions [10,11] which
allow to reconstruct the form factors in the dominating
axial current and in the small isospin violating vector cur-
rent contributions. In particular the interference effects
between the vector and the axial vector amplitudes, given
by the structure functionsWF ,WG,WH ,WI allow for such
a measurement. Any nonvanishing contribution to these
structure functions would be a clear signal of isospin vio-
lation in the three pion decay mode of the τ . After specify-
ing the isospin violating vector form factor, we will present
numerical predictions for these structure functions includ-

ing the full dependence on the resonance structure. We
also analyze Dalitz distributions for the purely axial vec-
tor structure functions. Such distributions, in particular
for the structure function WD, are fairly sensitive to the
details of the ρ sub-resonance implementation in the un-
derlying models.

A branching fraction of 0.6% in the τ → 3πντ mode
due to isospin violation has been reported by the AR-
GUS collaboration [12]. Their analysis is based on a study
of eight different contributions to the amplitude. Unfor-
tunately the relevant interference terms with the isospin
conserving part of the amplitude cannot be traced out
unambiguously from that work.

The paper is organized as follows: The general struc-
ture of the decay amplitude and the structure function
formalism in the three meson decay mode is briefly sum-
marized in Sect. II and a particular choice for the form
factors in the axial vector current, the Kühn–Santamaria
model [1], is specified in Sect. III. Isospin violating contri-
butions to an additional vector current form factor will be
discussed in Sect. IV (Sect.V) for the τ− → π−π−π+ντ
(τ− → π0π0π−ντ ) decay mode. The relevant hadronic
matrix elements are determined in the vector meson dom-
inance model. We obtain as a by-product from the decay
τ− → ηπ0π−ντ a new parametrization for the transition
of the ρ resonance into three pseudoscalar mesons which is
also needed as an input e.g. for the τ decay into KKπντ
final states. Finally, isospin violating signals induced by
the vector current form factor are discussed in Sect. VI.
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II Three meson decay modes:
form factors and structure functions

The matrix element M for the semi-leptonic τ decay into
three mesons h1, h2, h3

τ(l, s) → ντ (l′, s′) + h1(q1,m1) + h2(q2,m2) + h3(q3,m3)
(1)

can be expressed in the following form:

M(τ → ντ h1h2h3)

=
GF√

2

(cos θc
sin θc

)
ū(l′, s′)γµ(1− γ5)u(l, s) Jµ. (2)

In (2) GF denotes the Fermi-coupling constant and θc is
the Cabibbo angle. The hadronic current

Jµ(q1, q2, q3) = 〈h1(q1)h2(q2)h3(q3))|V µ(0)−Aµ(0)|0〉
(3)

is characterized by four independent form factors F1, F2, F3,
F4 [10]. These form factors are in general functions of
s1 = (q2 + q3)2, s2 = (q1 + q3)2, s3 = (q1 + q2)2 and Q2,
which is conveniently chosen as an additional variable.

Jµ(q1, q2, q3) = V µ
1 F1 + V µ

2 F2 + i V µ
3 F3 + V µ

4 F4 (4)

with
V µ

1 = (q1 − q3)ν Tµν
V µ

2 = (q2 − q3)ν Tµν

V µ
3 = εµαβγq1αq2 βq3 γ
V µ

4 = qµ1 + qµ2 + qµ3 = Qµ.

(5)

Tµν denotes the transverse projector

Tµν = gµν −
QµQν

Q2 . (6)

F1 and F2 determine the spin one component of the axial
vector current induced amplitude, F4 the spin zero part
which is given by the matrix element of the divergence
of the axial vector current. The vector current induced
amplitude is responsible for the form factor F3. All form
factors may contribute in the general three meson case
[13,14,3]. G-parity conservation and PCAC in the three
pion decay mode implies F3 = F4 = 0. However, isospin
violation is expected to give a nonvanishing contribution
to F3. Such contributions will be studied in the last three
sections of this paper.

The three meson decay in (1) is most easily analyzed
in the hadronic rest frame q1 +q2 +q3 = 0. The orienta-
tion of the hadronic system is in general characterized by
three Euler angles (α, β and γ) as introduced in [10,11].
Of particular interest are the distributions of the normal
to the Dalitz plane and the distributions around this nor-
mal. Performing the analysis in the hadronic rest frame
has the advantage that the product of the hadronic tensor
(Hµν = Jµ(Jν)†) and the leptonic tensor reduces to a sum
LµνHµν =

∑
X L̄XWX . The leptonic factors L̄X factorize

the dependence on the Euler angles. For the definition of
these angles and the explicit dependence of the coefficients
L̄X on α, β and γ see [10]. The (in general 16) hadronic

structure functions WX correspond to 16 density matrix
elements for a hadronic system in a spin one and spin
zero state (nine of them originate from a pure spin one
state and the remaining originate from a pure spin zero
state or from interference terms between spin zero and
spin one). These structure functions contain the dynamics
of the three meson decay and depend only on the form fac-
tors Fi and on the hadronic invariants Q2 and the Dalitz
plot variables si. The scalar contribution is expected to
be small [15] for all three meson final states and will be
neglected in the subsequent discussion of this paper1. In-
stead of the 16 real structure functions which characterize
the general hadronic tensor Hµν one thus deals only with
nine functions WX . These nine structure functions can be
divided in four functions which arise only from the axial
vector current (WA,C,D,E), one from the vector current
(WB) and the remaining four from the interference of the
axial vector and vector current (WF,G,H,I). The latter will
be of particular importance in the subsequent discussion.

The dependence of the structure functions on the form
factors Fi reads [10]:
Axial vector structure functions:

WA = (x2
1 + x2

3) |F1|2 + (x2
2 + x2

3) |F2|2
+2(x1x2 − x2

3) Re (F1F
∗
2 )

WC = (x2
1 − x2

3) |F1|2 + (x2
2 − x2

3) |F2|2
+2(x1x2 + x2

3) Re (F1F
∗
2 ) (7)

WD = 2
[
x1x3 |F1|2 − x2x3 |F2|2

+x3(x2 − x1) Re (F1F
∗
2 )]

WE = −2x3(x1 + x2) Im (F1F
∗
2 )

Vector structure function:

WB = x2
4|F3|2 (8)

Axial vector–vector interference structure functions:

WF = 2x4 [x1 Im (F1F
∗
3 ) + x2 Im (F2F

∗
3 )]

WG = −2x4 [x1 Re (F1F
∗
3 ) + x2 Re (F2F

∗
3 )]]

WH = 2x3x4 [ Im (F1F
∗
3 )− Im (F2F

∗
3 )] (9)

WI = −2x3x4 [ Re (F1F
∗
3 )− Re (F2F

∗
3 )]

The variables xi are defined by

x1 = V x
1 = qx1 − qx3

x2 = V x
2 = qx2 − qx3

x3 = V y
1 = qy1 = −qy2 (10)

x4 = V z
3 =

√
Q2x3q

x
3

1 Using an ansatz for a scalar contribution in the 3πντ de-
cay mode as specified in [10], U. Müller constrained such a
contribution in the branching ratio to be less than 0.84 %
by analyzing the spin-zero-spin-one structure functions with
1994 OPAL data [16]. Note that a possible scalar contribution
would not contribute to the vector-axial vector interference
structure functions in (9) which are important for an observa-
tion of isospin violating effects
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where qxi (qyi ) denotes the x (y) component of the momen-
tum of meson i in the hadronic rest frame. They can eas-
ily be expressed in terms of s1, s2 and s3 [10]. WA(Q2, si)
and WB(Q2, si) govern the rate and the distributions in
the Dalitz plot through

Γ (τ → 3hντ ) =
G2

12mτ

(cos θc
sin θc

)2 1
(4π)5

(11)

×
∫

dQ2

Q4 ds1ds2 (m2
τ −Q2)2

(
1 +

2Q2

m2
τ

)
(WA +WB)

The remaining structure functions determine the angular
distribution. All of them can be determined by a measure-
ment of the β and γ dependence even without reconstruct-
ing the τ rest frame.

III Axial vector current contribution
to τ− → (3π)−ντ

τ decays into three pions are dominated by the axial vec-
tor current which allows for significant simplifications: G-
parity implies F3 = 0, Bose symmetry relates F1 and F2
through F2(s1, s2, Q2) = F1(s2, s1, Q2) and PCAC leads
to F4 = 0. Note that the structure functions WB,F,G,H,I

in (8,9) vanish for F3 = 0.
The two like-sign pions in τ− → π−π−π+ντ and τ− →

π0π0π−ντ are labeled such that |p2| > |p1| and p3 refers to
the unlike-sign pion. The normalization of the form factors
F1 and F2 for the three pion decay mode is determined in
the chiral limit2 [17],

F1 = F2 = i
2
√

2
3fπ

, fπ = 93 MeV (12)

For large Q2, s1 and s2 these form factors are modulated
by resonances in the 3π and 2π channel. Following the
ansatz of Kühn and Santamaria [1], one has

F1(Q2, s2) = i
2
√

2
3fπ

BWa1(Q
2)T (2m)

ρ (s2) (13)

F2(Q2, s1) = i
2
√

2
3fπ

BWa1(Q
2)T (2m)

ρ (s1) (14)

The Breit–Wigner functions BWX(s) are parametrized in-
cluding energy dependent widths,

BWX(s) =
m2
X

m2
X − s− i

√
sΓX(s)

, BWX(0) = 1 (15)

For the a1 we have in particular

Γa1(s) =
ma1√
s
Γa1

g(s)
g(m2

a1
)
, ma1 = 1.251 GeV ,

Γa1 = 0.475 GeV (16)

where the function g(s) has been calculated in [1] and is
derived from the observation, that the axial vector reso-
nance a1 decays predominately into three pions.

2 We use the Condon-Shortley phase conventions

The superscript (2m) in the ρ form factor T (2m)
ρ (s) de-

notes the subsequent decay into two pions. In the parame-
trization of T (2m)

ρ (s) one allows for a contribution of the
first excitation ρ′,

T (2m)
ρ (s) =

1
1 + βρ

[
BWρ(s) + βρ BWρ′(s)

]
, (17)

with the energy dependent width

Γρ(s) = Γρ
m2
ρ

s

(
s− 4m2

π

m2
ρ − 4m2

π

)3/2

(18)

and similarly for the ρ′. The parameters are given by

βρ = −0.145 ,
mρ = 0.773 GeV , Γρ = 0.145 GeV ,

mρ′ = 1.370 GeV , Γρ′ = 0.510 GeV . (19)

which have been determined from e+e− → π+π− in [1].
Predictions for the (s1−s2)-integrated structure functions
wX(Q2) =

∫
ds1ds2WX(Q2, s1, s2) for X = A,C,D,E

based on this model are in good agreement with data [18].
The invariant 3π and 2π mass distributions for the four
integrated nonvanishing structure functionsWA,WC , sign
(s1− s2)WD, sign(s1− s2)WE in Fig. 1 reveal the impor-
tance of the a1 (solid) and ρ (dashed) resonances. The

√
s3

distribution (dotted line) is then fixed by phase space re-
strictions and the

√
Q2 and

√
s1,2 distributions through

s3 = Q2−s1−s2 +3m2
π. The structure functions WD and

WE are combined with an energy ordering sign(s1 − s2)
to account for Bose symmetry. The

√
s1,2 distributions of

WA,WC and sign(s1 − s2)WF have a clear peak around
the ρ resonance, whereas sign(s1 − s2)WD(

√
s1,2) has a

surprisingly different behaviour in the Kühn-Santamaria
model. The distribution shows a relatively wide peak
around

√
s1,2 = 0.5 GeV and only a much smaller ad-

ditional peak around the ρ mass. In contrast, the
√
s1,2

distribution for sign(s1 − s2)WD based on the model in
[19] has its maximum around the ρ mass and only a small
additional peak around

√
s1,2 = 0.5. An experimental con-

firmation of the predictions for the
√
s1,2 distributions in

the axial vector structure functions shown in Fig. 1 and
in particular in sign(s1 − s2)WD would be a good test of
the details in the ρ resonance structure in the Kühn San-
tamaria model which we use for the two axial vector form
factors F1 and F2.

IV Vector current contribution
to τ− → π−π−π+ντ

More detailed studies, such as testing the magnitude of
amplitudes induced by F3 through isospin violation, are
possible and will be discussed in the following. Since they
affect the angular distributions through interference terms
between the (small) contribution from F3 with the large
contributions from F1 and F2 (see (9)), they should be ac-
cessible in measurements of the structure functions
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Fig. 1. Invariant mass distributions x =
√
Q2 = m(π−π−π+) (solid), x = √s1,2 = m(π+π−) (dashed) and x =

√
s3 = m(π−π−)

(dotted) of the structure functions WA a, WC b, sign(s1 − s2)WD c, sign(s1 − s2)WE d in the τ− → (3π)−ντ decay mode

WF,G,H,I , already with the statistics of ongoing experi-
ments.

A small vector current contribution (∼ F3 in (4)) to
the τ− → π−π−π+ντ mode is expected to arise from the
τ− → ωπ−ντ decay with the subsequent isospin violating
ω decay into π+π−. G-parity requires that the ωπ− system
is in a 1− state and hence the τ− → ωπ−ντ decay can only
proceed via a vector current. The hadronic matrix element
is determined through [3,20] (for another approach see
[21])

〈ω(q̃1, λ)π−(q̃2)|V µ(0)|0〉 = i εµαβγ ε∗α(q̃1, λ) q̃1 β q̃2 γ
× F

(ωπ)
V (Q2)

F
(ωπ)
V (Q2) = i

fρ−gρωπ

m2
ρ

T (4m)
ρ (Q2) (20)

Q2 = (q̃1 + q̃2)2

where V µ is the vector part of the weak current. Note that
we have fixed the sign of F (ωπ)

V (0) from π0 → γγ. fρ− is
the coupling of the charged ρ± to the gauge boson W±
and is related to the ρ0γ coupling fρ, gρωπ is measured in
the decays ω → π0γ and ω → π+π−π0 [22], respectively,

fρ− =
√

2 fρ ' 0.17 GeV2 (21)

gρωπ =

{
11.7± 0.4 GeV−1 from Γ

(
ω → π0γ

)
15.0± 0.1 GeV−1 from Γ

(
ω → π+π−π0

)
The ρ-meson and its radial excitations are possible res-
onance candidates for the vector form factor T

(4m)
ρ (s),

where the superscript (4m) refers to the (anomalous) VMD
decay chain ρ → ωπ → 4π. The admixture of the radial
excitations in T

(4m)
ρ (s) is expected to differ from the cor-

responding ρ form factor T (2m)
ρ (s) with a dominant two

pion decay in (17). Here we allow for an admixture of the
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Fig. 2. The invariant ωπ mass spectrum from τ− → ωπ−ντ
measured by ARGUS [23] (filled circles), by CLEO [24] (opened
circles) and by ALEPH [25] (opened squares). The solid line
shows the fit result to (20,23)

ρ′ and the ρ′′ via

T (4m)
ρ (s) (22)

=
1

1 + λ+ κ

[
BWρ(s) + λBWρ′(s) + κBWρ′′(s)

]
where we fix the parameters to the PDG [22] values, which
yields

mρ = 0.773 GeV , Γρ = 0.145 GeV
mρ′ = 1.465 GeV , Γρ′ = 0.310 GeV
mρ′′ = 1.70 GeV , Γρ′′ = 0.235 GeV .

(23)

The parameters λ and κ are obtained from a fit to the
normalized invariant mass spectrum of τ− → ωπ−ντ data
[23–25], see Fig. 2,

λ = −0.054± 0.012
κ = −0.036± 0.004 (24)

χ2/d.o.f. = 53.3/31 .

Note that the errors should be taken as an educated guess
only, since we fit to the published data with the correlation
matrices to be diagonal, and the mass and width parame-
ters in (23) are considered exact values. The values in (24)
lead to the following branching ratios, depending strongly
on the ω decay channel from which one extracts gρωπ,

B
(
τ− → ωπ−ντ

)
(25)

=

{
(0.98± 0.21) % gρωπ = 11.7± 0.4 GeV−1

(1.61± 0.23) % gρωπ = 15.0± 0.1 GeV−1

The errors in the branching ratios are dominated by the
errors in λ and κ in (24). A comparison to the measured
experimental branching ratios shows that small values for
gρωπ are excluded,

Bexp.
(
τ− → ωπ−ντ

)
= (1.92± 0.08) % (26)

where we combined the measured branching fractions from
CLEO [24] and ALEPH [25] . Thus we will put gρωπ =
15.0 GeV−1 in the following, keeping in mind that the
measured τ decay rate would even require a higher value
of gρωπ.

The transition ω → π+π− is assumed to proceed
through ρ0ω mixing and is written in the form

〈π+(k1)π−(k2)|T |ω(k, λ)〉
=
θρωgρππ
m2
ρ

BWρ(k2)(k1 − k2)µ εµ(k, λ) (27)

where gρππ is related to the decay ρ0 → π+π−, and the
ρ0ω mixing parameter θρω is measured in e+e− → π+π−
experiments [26],

gρππ = 6.08, θρω = (−3.97± 0.20)× 10−3 GeV2 . (28)

Combining the amplitudes in (20, 27) one obtains for the
three pion decay mode after summation over the polariza-
tion λ of the intermediate ω state,

〈π−π−π+|V µ|0〉 =
∑
λ

〈π+π−|T |ω(p, λ)〉

×〈ω(p, λ)π−|V µ|0〉 − 1
m2
ω

BWω(s) (29)

where s = p2 is the momentum transfer and the width
in BWω(s) is chosen to be energy independent due to its
smallness,

BWω(s) =
m2
ω

m2
ω − s− imωΓω

,

Mω = 0.782 GeV, Γω = 8.4 MeV (30)

With the identity
∑

λ εµ(p, λ)ε∗ν(p, λ) = −gµν + pµpν/m2

we find the following parametrization of the form factor
F3,

〈π−(q1)π−(q2)π+(q3)|V µ(0)|0〉
= i εµαβγ q1αq2 βq3 γ F3(s1, s2, Q2)

F3(s1, s2, Q2)

= −2
θρωgρππ
m2
ρm

2
ω

F
(ωπ)
V (Q2)

× [BWω(s1)BWρ(s1)− BWω(s2)BWρ(s2)] . (31)

V Vector current contribution
to τ− → π0π0π−ντ

In the case of the τ− → π0π0π−ντ decay mode we assume
that the vector current contribution is generated by ηπ0

mixing in the decay chain τ− → ηρ−ντ → π0π0π−ντ .
The τ− → ηπ0π−ντ decay is allowed to proceed in

the Standard Model via a vector current induced by the
Wess-Zumino anomaly part in the Lagrangian [27]. A nor-
malization of the form factor F (ηππ)

3 is fixed in the chiral
limit and a parametrization of F (ηππ)

3 reads [7,14,28,29]

〈η(q1)π0(q2)π−(q3)|V µ(0)|0〉
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Fig. 3. The ηππ mass spectrum from τ− → ηπ0π−ντ mea-
sured by CLEO [31] (filled circles) and by ALEPH [25] (open
circles) normalized to Γe = Γ (τ− → e−νeντ ). The solid line
shows the fit result to (33), the dashed line represents the ηππ
mass spectrum obtained from e+e− → ηππ data [28,30]

= i εµαβγ q1αq2 βq3 γ F
(ηππ)
3 (s1, Q2)

F
(ηππ)
3 (s1, Q2)

= i

√
6

12π2f3
π

T (3m)
ρ (Q2)T (2m)

ρ (s1) . (32)

The form and parameters of T (2m)
ρ (s) are given in (17,19).

For the form factor T
(3m)
ρ (s) the superscript (3m) im-

plies the anomalous transition ρ → ηρ → ηππ. In [3,
14,28], a form for T

(3m)
ρ (s) including ρ, ρ′ and ρ′′ was

used, which has been obtained from a fit to (fairly poor)
e+e− → ηππ data [28,30]. However, new measurements
for τ− → ηπ0π−ντ have become available allowing now for
a direct determination of T (3m)

ρ (s) in τ decays [25,31]. A
direct fit to the differential decay rate for τ− → ηπ0π−ντ
normalized to Γe = Γ (τ− → e−νeντ ) as shown in Fig. 3
(solid line) yields for the coefficients ξ and σ:

T (3m)
ρ (s) =

1
1 + ξ + σ

[
BWρ(s) + ξBWρ′(s) + σBWρ′′(s)

]
ξ = −0.22± 0.03
σ = −0.10± 0.01

χ2/d.o.f. = 11.0/14 . (33)

where the masses and widths of the resonances are given
in (23). Again the errors have to be considered educated
ones, see the remark in Sect. III. The branching fraction
that we obtain is compatible with the measured decay
rate,

B
(
τ− → ηπ0π−ντ

)
= (0.14± 0.05) %

Bexp.
(
τ− → ηπ0π−ντ

)
= (0.17± 0.03) % . (34)

where we give the weighted average of the experimen-
tal branching fractions from CLEO [31] and ALEPH [25].
Thus the invariant mass distribution and the decay rate
for the τ− → ηπ0π−ντ decay mode are well described by
these parameters. On the other hand we found that the

Fig. 4. Invariant mass distributions x =
√
Q2 = m(π−π−π+)

(solid), x =
√
s1 =

√
s2 = m(π+π−) (dashed) and x =

√
s3 =

m(π−π−) (dotted) of the structure function WB in the τ− →
π−π−π+ντ decay mode

ηπ0π− invariant mass spectrum in Fig. 3 is only poorly
described by the T

(3m)
ρ (s) parametrization based on the

e+e− → ηππ data (dashed line in Fig. 3).
For the isospin violating form factor in the three pion

decay we deduce the form

〈π0(q1)π0(q2)π−(q3)|V µ(0)|0〉
= i εµαβγ q1αq2 βq3 γ F3(s1, s2, Q2)

F3(s1, s2, Q2)
= ε

[
F

(ηππ)
3 (s1, Q2)− F

(ηππ)
3 (s2, Q2)

]
, (35)

where an estimate of the ηπ0 mixing parameter ε is given
by [32]

ε = (1.05± 0.07)× 10−2 . (36)

An additional decay channel would be induced by ηη′
mixing with a subsequent η′π0 transition. Experimentally,
the decay τ− → η′π0π−ντ has not been observed [33]
and thus a reliable parametrization of the associated form
factor F

(η′ππ)
3 is missing. We therefore neglect possible

contributions from the η′ as an intermediate state.

VI Numerical results

After having fixed our model for the isospin violating vec-
tor current contributions to the three pion decay mode,
we next discuss numerical effects of this contribution to
the decay widths and in particular to the structure func-
tions WB , sign(s1−s2)WF , sign(s1−s2)WG,WH and WI .
The structure functions WF and WG are again combined
with an energy ordering sign(s1− s2) to account for Bose
symmetry.

Let us start with the τ− → π−π−π+ντ decay mode.
Fig. 4 shows the resonance structure of the pure vector
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Fig. 5. Invariant mass distributions x =
√
Q2 = m(π−π−π+) (solid), x = √s1,2 = m(π+π−) (dashed) and x =

√
s3 = m(π−π−)

(dotted) of the structure functions sign(s1 − s2)WF a, sign(s1 − s2)WG b, WH c, WI d in the τ− → π−π−π+ντ decay mode

structure function WB . The (π−π−π+) mass distribution
(solid line) is dominated by the two higher radial exci-
tations ρ′(1465) and ρ′(1700) of the ρ resonance in (20).
The narrow peak in the

√
s1 =

√
s2 = m(π+π−) distri-

bution (dashed line) shows the dominance of the ω sub-
resonance in the vector current. The shape of the

√
s3

distribution (dotted line) is fixed by phase space restric-
tions and the

√
Q2 and

√
s1,
√
s2 distributions through

s3 = Q2 − s1 − s2 + 3m2
π. A comparison of WB in Fig. 4

with WA in Fig. 1 shows that the contribution to the de-
cay rate from WB is small compared to the axial vector
structure function WA. In fact, using (12) we find that WB

contributes numerically 0.4% to the decay rate, which is
slightly below the branching fraction that has been re-
ported by ARGUS [12], namely 0.6%. Due to the large
uncertainties in the axial vector part, in particular in the
a1 width, isospin violating effects cannot be seen by a rate
measurement. One could try to disentangle the structure

functions WA and WB by analyzing the difference in the
cosβ distribution (see [10,11]) (β denotes the angle be-
tween the normal of the three pion plane and the direc-
tion of the laboratory in the hadronic rest frame). How-
ever, the sensitivity to the difference in the β distribution
for these two structure functions is fairly small [16] and
such an analysis is probably not possible with the current
statistics.

Much more promising is an analysis of the vector cur-
rent contribution through the measurement of the inter-
ference effects between the vector current contribution
with the dominating axial vector current contribution, i.e.
through a measurement of the structure functions
sign(s1−s2)WF , sign(s1−s2)WG,WH and WI . The three
meson and two meson invariant mass distributions for
these structure functions are shown in Fig. 5. The shape
of the three pion invariant mass distributions (solid lines)
is determined by the interference of the a1 resonance in
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the form factors F1 and F2 and the T (4m)
ρ resonance in (20,

23). The ρ′ and ρ′′ peaks are visible in all four structure
functions. Similarly, the narrow peaks around 800 MeV
in the m(π+π−) invariant mass distribution is a conse-
quence of the interfering ρ resonance in F1 and F2 with
the product of BWω(s1,2)BWρ(s1,2) in F3 as described
in (31). The structure functions sign(s1−s2)WF and WH

are the most promising candidates to extract a vector cur-
rent contribution in an unambiguously way. An additional
scalar contribution of the same size as the vector current
contribution discussed before would contribute to two ad-
ditional structure functions whose angular coefficients are
similar to those of WG and WI [10], and thus a separation
of the vector current and such scalar effects might be very
difficult with presently available statistics in the data (see
also [16]). On the other hand, the angular distributions
which determine the structure functions sign(s1− s2)WF

and WH differ considerably from those originating from
possible spin-zero-spin-one interference effects. Any non-
vanishing contribution to these structure functions would
therefore be a clear signal of isospin violation.

In the decay τ− → π0π0π−ντ we find the effects of
isospin violation to be negligibly small. Indeed, the con-
tribution to the decay rate from WB is of the the or-
der 10−3%. Those the amplitudes in the invariant mass
distributions of WB are very small when compared to
the corresponding invariant mass spectra in the decay
τ− → π−π−π+ντ . Even the distributions in the interfer-
ence terms do not have significant amplitudes. We there-
fore conclude that isospin violation in the decay τ− →
π0π0π−ντ can hardly be measured in presently available
data.

To summarize: An isospin violating vector form factor is
expected to give a contribution of about 0.4% to the decay
rate in the τ− → π−π−π+ντ decay mode. Sizable interfer-
ence effects of this vector form factor with the dominating
axial vector form factors are discussed in detail. These ef-
fects could be observed with presently available statistics
without reconstructing the τ rest frame. Any nonvanish-
ing contribution to the corresponding structure functions
would be a clear signal of isospin violation. The corre-
sponding signals in the τ− → π0π0π−ντ decay are found
to be considerably smaller.
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10. J.H. Kühn and E. Mirkes, Zeit. Phys. C56 (1992)

661;C67 (1995) 364 (E)
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